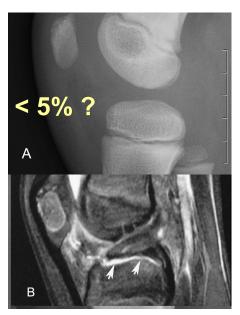


ACL-R : special case Young population (children, adolescent)

Auteurs : Dr Nicolas GRAVELEAU & Dr Nicolas BOUGUENNEC Bordeaux-Mérignac

And SFA



Epidemyology of ACL tears in Childrens

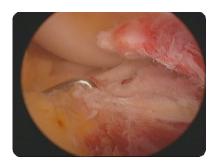
Meniscal risk

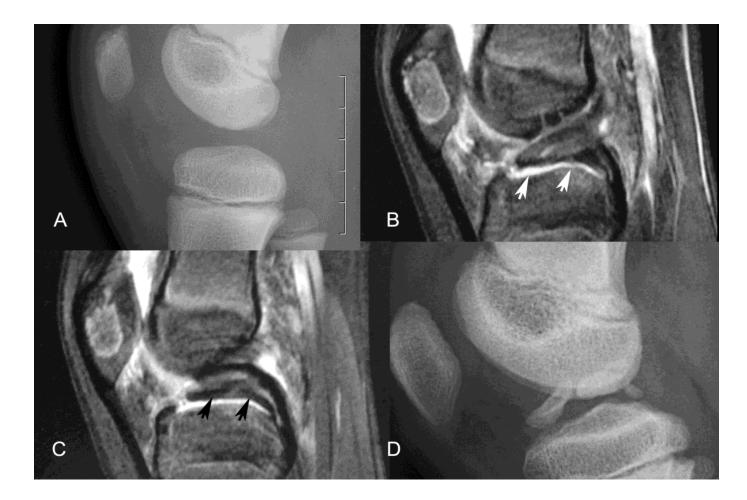
12-18 yo

< 8 yo

Tibial spine Fracture Cartilage avulsion

Tibial spine fracture Bony lesion




Ligament tears

Tibial cartilage avulsion ACL

Ski injury

 MRI : Epiphyseal HYPERsignal Double PCL

Chotel KSSTA 2013 & 2015

Not a meniscal LESION

Tibial Spine fractures

3à6%?

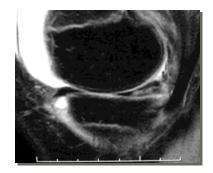
NO associated meniscal tears

BUT under evaluated at the time of surgery +++

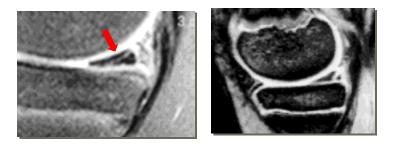
Linked with age and amount of energy in the trauma mechanism

MRI: 40 %? Medial AND lateral Adolescents

Shea JPO 2011 Kocher Am J Sport Med 2003 Ishibashi Clin Orthop Res 2007



Acute ACL tears in the ligament


Acute phase MRI : associated lesions ?

False positive of Medial meniscal lesion Intra meniscal Vascular hypersignal

Morphologique abnomalie or linear hypersignal to the surface of the meniscus ?

Two different situations

Isolated ACL tear (stable knee)

WAIT

Is it reliable in term on healing ? Which lesion has the potential to heal ? Lateral meniscus ≠medial M. Unstable meniscal tear(s) + ACL insufficiency (unstable knee)

STABILIZE the KNEE Long term result on unstable knee is well known ACL reconstruction should be efficient

Lateral meniscus ≠ medial M. ?

CONTROVERSY in pediatric

Initial management : NON operative versus operative

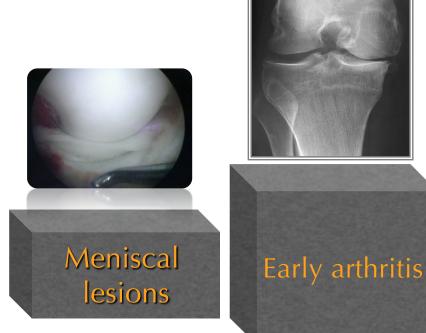
Operative management

- Technique
 - \circ Nontransphyseal
 - Partial transphyseal
 - o Transphyseal
- Graft choice / fixation
- Age / skeletal maturity

COMPLICATIONS

Growth disturbance

Chronic ACL tear

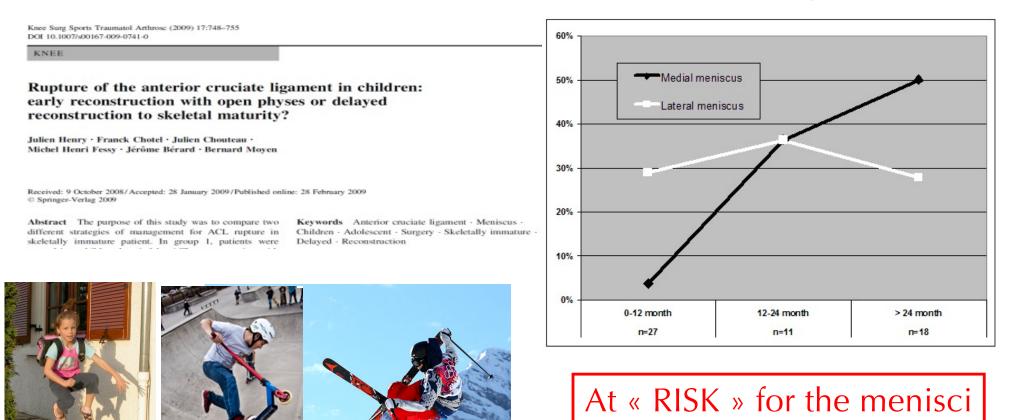

Conservative treatment can lead to early arthritis

Patients followed by ... surgeons

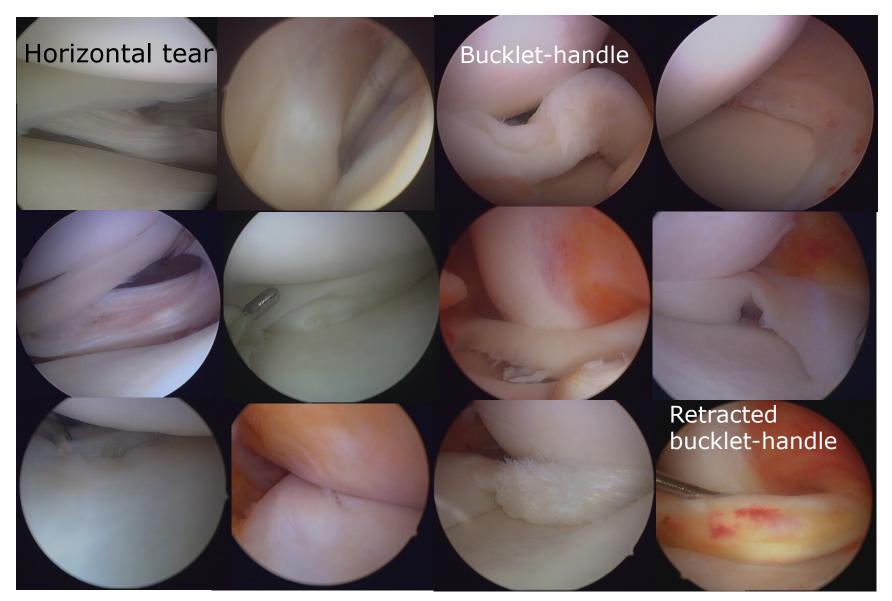
- No ability to resume sport
- Pain
- Instability
- Meniscal lesions
- Early arthritis

ACL deficient knee

Instability



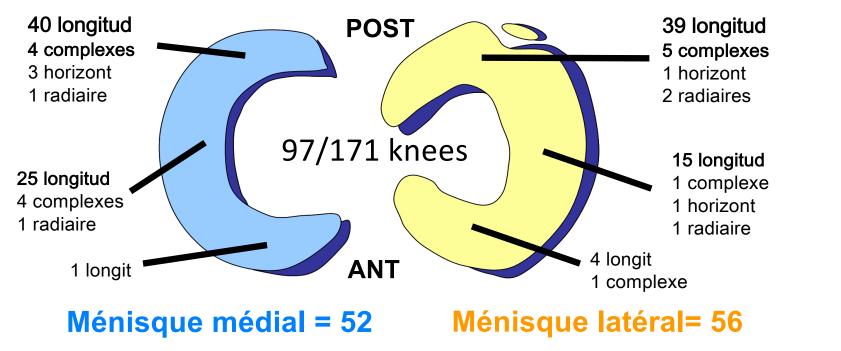
Aichroth JBJS 2002; Graf Arthroscopy 1992; Janarv JPO 1996; Mizuta JBJS-B 1985 McCarroll AJSM 1988, AJSM 1994


Delayed surgery at the end of growth

rate of MENISCAL lesion and subsequent MENISECTOMY (compare to early reconnstruction)

Henry, Chotel KSSTA 2009

Potentialy at risk for the meniscus


menisco-capsular lesions

Meniscal lesions in ACL deficient knees

- Open physis : 46 % of meniscal tears
- Closed physis : 66 % of meniscal tars

Significative différence

ADOLESCENTS are more likely to have associated meniscal lesion compare to CHILDREN (bony immaturity)

Chotel KSSTA 2015

Meniscal lesions in ACL deficient knees Do conservative treatment increase the risk of subsequent meniscal lesion ?

Prevalence and incidence of new meniscus and cartilage injuries after nonoperative treatment algorithm for ACL tears in skeletally immature children.

- 41 patients
- Average age 11 +/-1,4
- 65% d⁷, 88% pivot-contact
- Delai between trauma & FU **3,8 years** +/-1,4.
- 28 CONSERVATIVE treatment : 28,5% initial meniscal lesions 3,6% « new » tears
- 13 SURGICAL treatment at 13,2 y.o., intervalle / trauma de 1,6 years

prévalence of meniscal tears : 46,2%

incidence « new » tears : 19,5%

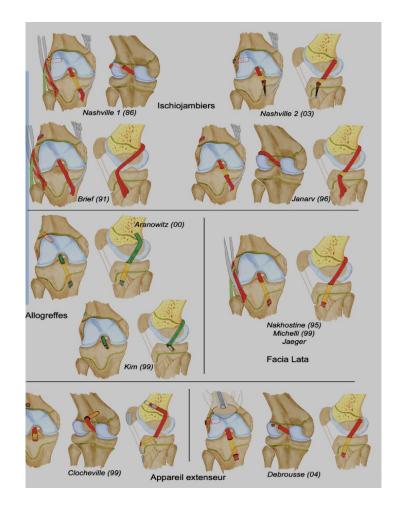
Moksnes, AmJSportsMed 2013

Type of surgical treatment

Reconstruction of the Anterior Cruciate Ligament in the Skeletally Immature Athlete: A Review of Current Concepts

AAOS Exhibit Selection

Peter D. Fabricant, MD, Kristofer J. Jones, MD, Demetris Delos, MD, Frank A. Cordasco, MD, MS, Robert G. Marx, MD, MSc, Andrew D. Pearle, MD, Russell F. Warren, MD, and Daniel W. Green, MD, MS


	First Author	No. of Patients	Mean Age (yr)	Mean Follow-up (mo)	Graft	Recurrent Instability	Reinju
All-epiphyseal	Anderson ⁴⁴ , 2003	12	13.3	49.2	Hamstring	NR	NR
physeal-sparing)	Guzzanti ⁴⁹ , 2003	8	11.2	69.2	Hamstring	NR	NR
	Hui ³⁶ , 2012	16	12	24.0	Hamstring auto./allo.	NR	NR
xtraphyseal	Parker ⁵⁵ , 1994	6	13.3	33.2	Hamstring	NR	NR
physeal-sparing)	Nakhostine ⁵⁴ , 1995	5	14.0	52.8	Fascia lata	NR	None
	Kocher ³³ , 2005	44	10.3	63.6	ITB	NR	NR
	Bonnard ⁴⁷ , 2011	56	12.2	66.0	BTB	NR	5.49
Partial transphyseal	Andrews ⁴⁵ , 1994	8	13.5	58.0	FL/Achilles allo.	None	NR
	Lo ⁵² , 1997	5	12.9	88.8	Hamstring/quad.	None	NR
ransphyseal	Lipscomb ⁵¹ , 1986	24	15.0	35.0	Hamstring	None	NR
	Aronowitz ⁴⁶ , 2000	15	14.0	25.0	Achilles allo.	NR	NR
	McIntosh ⁵³ , 2006	16	13.5	41.1	Hamstring	NR	12.5
	Kocher ⁵⁶ , 2007	59	14.7	43.2	Hamstring	NR	NR
	Liddle ⁵⁰ , 2008	17	12.0	44.0	Hamstring	NR	5.9
	Cohen ³⁵ , 2009	26	13.3	45.0	Hamstring	NR	6.7
	Courvoisier ⁴⁸ , 2011	37	14.0	36.0 (median)	Hamstring	NR	8.1

*LLD = limb-length discrepancy, NR = not reported, ITB = iliotibial band, BTB = bone-tendon-bone, and FL = fascia lata.

N_{max} = 56

Fabricant JBJS(Am) 2013

What is the best surgical treatment ?

EXTRA ARTICULAR

Dahlstedt 1988 McCarroll 1988 Lazzarone 1990 Graf 1992 Nakhostine 1995

PHYSEAL SPARING

DeLee 1983 Brief 1991 Janarv 1996 Micheli 1999 Anderson 2004 Guzzanti 2004

PARTIAL TRANSPHYSEAL

Liscomb 1986 Andrews 1994 Lo 1997 Bisson 1998

FULL TRANSPHYSEAL

Liscomb 1986 McCarroll 1988 Matavan 1997 Aronowitz 2000

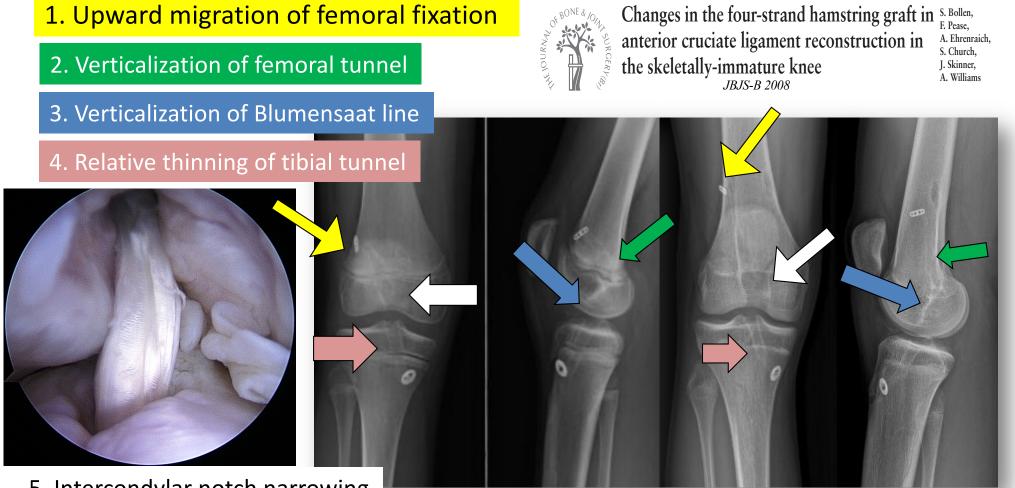
Potential growth disturbances in pediatric ACL reconstructions

4 types of gross complications

N = 354 in the literature

Moksnes, Engebretsen, Seil, KSSTA 2015

Arrest distal lateral femur physis: valgus knee Arrest tibial tuberosity: recurvatum


NO transphyseal hardware or synthetic graft

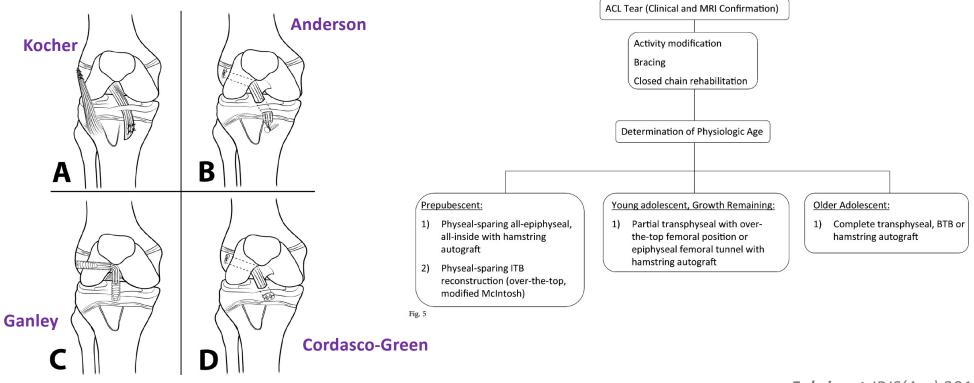
Arrest medial proximal tibial physis: Varus knee

Chotel F, KSSTA 2010

Graft mofifications with knee growth after ACL reconstructions

5. Intercondylar notch narrowing

o ACL-replacement @ 11 y


+ 5 years

Adapt the technique to the age

Reconstruction of the Anterior Cruciate Ligament in the Skeletally Immature Athlete: A Review of Current Concepts

AAOS Exhibit Selection

Peter D. Fabricant, MD, Kristofer J. Jones, MD, Demetris Delos, MD, Frank A. Cordasco, MD, MS, Robert G. Marx, MD, MSc, Andrew D. Pearle, MD, Russell F. Warren, MD, and Daniel W. Green, MD, MS

ACL-r Pediatric & Adolescent

Technical Guidelines - R Seil

- Avoid hardware across Lateral Fistal Femoral Physis
- Avoid hardware across Tibial Tubercle Apophysis
- Avoid Bone Plugs across Physis

 Hamstrings Graft
- Avoid LARGE tunnels
- Avoid Extra-Articular Tenodesis
- Minimal Over-the-Top dissection & Notchplasty
- Consider Physeal Sparing Reconstruction in prepubescent patients

Surgical-experimental principles of anterior cruciate ligament (ACL) reconstruction with open growth plates

Romain Seil^{1,2*}, Frederick K Weitz³ and Dietrich Pape^{1,2}

RE-injury rates - Kocher

Transphyseal Anterior Cruciate Ligament Reconstruction in Skeletally Immature Pubescent Adolescents

By Mininder S. Kocher, MD, MPH, Jeremy T. Smith, MD, Bojan J. Zoric, MD, Ben Lee, BA, and Lyle J. Micheli, MD

Continuous cohort with transepiphyseal Hamstrings ACL reconstruction in 61 adolescents aged 14,7 yo (11.6-16.9) & (Tanner stage 3) b. 1996 et 2004. FU at 3.6 ans (2.0 à 10.2 ans)

2 iterative reconstruction of ACL (3%)

IKDC 89.5 /Lysholm knee score 91.2 Lachman 0 51 / 59 cas Pivot-shift normal 56 / Glide 3 / franc +explosive 0

- > NO radiologic axes change
- > NO lenght discrepency
- 3 stiffness

Transphyseal reconstruction of the anterior cruciate ligament with use of an **autogenous quadrupled hamstrings-tendon graft** with metaphyseal fixation in skeletally immature pubescent adolescents provides an excellent functional outcome with a low revision rate and a minimal risk of growth disturbance. There was a low revision rate (3%),

RE-injury rates - Shelbourne

Q < 18 ans = 19%

12 % controlateral

7 % at 5 years

Incidence of Subsequent Injury to Either Knee Within 5 Years After Anterior Cruciate Ligament Reconstruction With Patellar Tendon Autograft

K. Donald Shelbourne,* MD, Tinker Gray, MA, and Marc Haro, MD From the Shelbourne Knee Center, Indianapolis, Indiana

		ACL 7 to AC Reconst Kno	CL- ructed	AC Tear Contral Kno	• to ateral	<i>P</i> Value (Difference in Tears	Q
Age Group/Gender	n	n	%	n	%	Between Knees)	< 18
<18 years old	528	46	8.7	46	8.7	1.00	
Female	310	23	7.4	36	11.6	$.00998^{b}$	19%
Male	218	23	10.6	10	4.6	$.02845^{b}$	T3 /0
P value (difference in tears between genders)		.214		$.0046^{b}$			
18 to 25 years old	350	9	2.6	14	4.0	.3969	
Female	103	2	1.9	5	4.9	.4450	
Male	247	7	2.8	9	3.6	.800	
P value (difference in tears between genders)		1.00		.5631			
>25 years old	537	6	1.1	15	2.8	.0754	
Female	139	1	0.7	2	1.4	1.00	
Male	398	5	1.3	13	3.3	.0925	
P value (difference in tears between genders)		1.00		.3746			
Totals	1415	61	4.3	75	5.3	.2185	7,8%
Female	552	26	4.7	43	7.8	$.0459^{b}$	1,070
Male	863	35	4.1	32	3.7	.8034	
P value (difference in tears between genders)		.5543		.0014''			

 TABLE 3

 Subsequent ACL Injuries to Either Knee Based on Age Group and Gender^a

^aACL, anterior cruciate ligament.

^bStatistically significant difference between groups.

RE-injury rates - Webster

Exploring the High Reinjury Rate in Younger Patients Undergoing Anterior Cruciate Ligament Reconstruction

Kate E. Webster and Julian A. Feller Am J Sports Med published online July 7, 2016

Cohorte study 316 (FU) / 354 patients < 20 YO Hamstrings

5 years FU (3-10) : RE-rupture & CONTRO lateral rupture

- **RE-ruptures** : 57 patients (**18%**) after 1.8 y.
- Highest RE-rupture rate = 28.3% in males <18 ans (13.8% if >18 ans)
- Controlateral ruptures : 17.7% average 3.7 years post-op

110 patients (35%) sustain ANOTHER ACL tears (any side)

Figure 1. Percentage of patients with graft ruptures and contralateral anterior cruciate ligament injuries by each year of age.

TABLE 2 Graft Rupture Rates Categorized by Sex and Age			
Age at Surgery, y	Male Patients, %	Female Patients, %	
<18	$28.3^{a,b,c}$	12.9	
18 or 19	13.8	9.7	

	ralateral ACL Injury	
Age at Surgery, y	Male Patients, %	Female Patients, %
<18	18.9	18.8
18 or 19	17.0	12.9

TADIE 9

	TABLE 4 Rupture and Contra ries Categorized by S	alateral ACL Injury) Sex and Age
Age at Surgery, y	Male Patients, %	Female Patients, %
<18	$44.3^{a,b}$	31.8

30.9

18 or 19

22.6

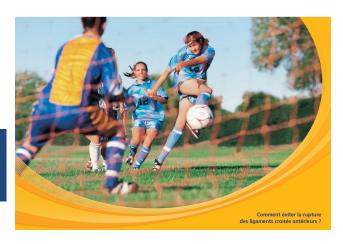
Prevention program Decrease te RISK of (RE-)injury

Temps écoulé

Objectif

Instructions

3B. Ischio-jambiers (3 séries de 10)


7,5-8,5 minutes

Renforcer les ischio-jambiers.

Agenouillez-vous au sol. Un partenaire vous tient fermement les chevilles. Le dos plat, penchez-vous en avant avec le bassin bien en avant. Genoux, hanches et épaules doivent former une ligne droite lorsque vous vous penchez en avant. Ne fléchissez pas le tronc. Vous devez sentir la tension dans les muscles à

●●●●○ Movistar 죽	12:04	7 🏵 🔜 4
	Get Set	
SPORT	CORPS	HISTORIQUE
ja.	i)	(
Ski alpin	Tir à l'arc	Gymnastique artistique
se		12 27
Athlétisme	Badminton	Basketball
	re	2000
Volleyball de plage	Biathlon	Bobsleigh
バ	*	T
Boxe	Canoë-kayak	Ski de fond

Hamstring Stretching Hamstring strenghtening

2C. Etirement des ischio-jambiers (2 séries de 30 secondes)			
Temps écoulé	3,5-4,5 minutes		
Objectif	Etirer les ischio-jambiers (muscles de l'arrière de la cuisse).		
Instructions	Asseyez-vous au sol avec la jambe droite tendue devant vous. Pliez le genou gauche et placez le pied gauche au niveau de votre cuisse droite. Gardez le dos bien droit et penchez le buste en direction du genou droit. N'arrondissez pas le dos. Si possible, tentez d'attraper vos orteils et tirez-les en direction de votre tête. Evitez les à-coups. Maintenez la position 30 secondes et changez de jambe.		
NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.			

Roald BAHR, Grethe MYKLEBUST, Kathrin STEFFN & Ben CLARSEN OSLO

Strict criteria for RTP

No PAIN No EFFUSION Full ROM STABLE KNEE HEALED graft & meniscus Good muscular STRENGHT Good functionnal STABILITY

Clinical examination Clinical examination Physio assesment GnRB & Pivot MRI at FU Isokinetiq (& Rachet's chair hamstring test?) JUMP landing – JUMP tests Recorded videos of trauma ?

Psychologisc support ?

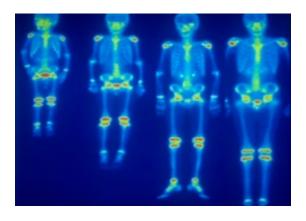
Martin R, Gard S, Besson C, Menetrey J et al Rev Med Suisse 2013

How to make decision ? Every day ...

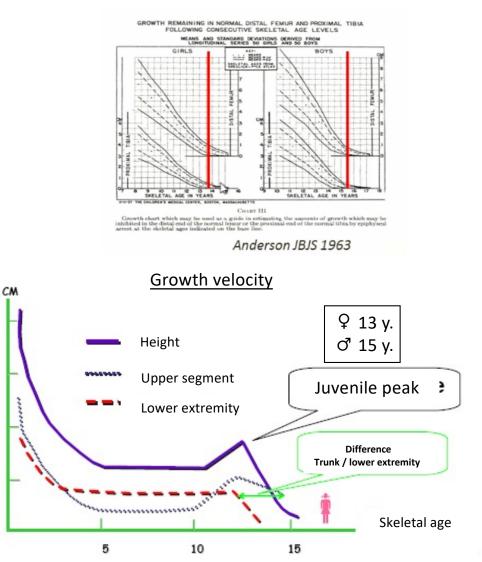
Quantify the residual growth potential

20

15


10

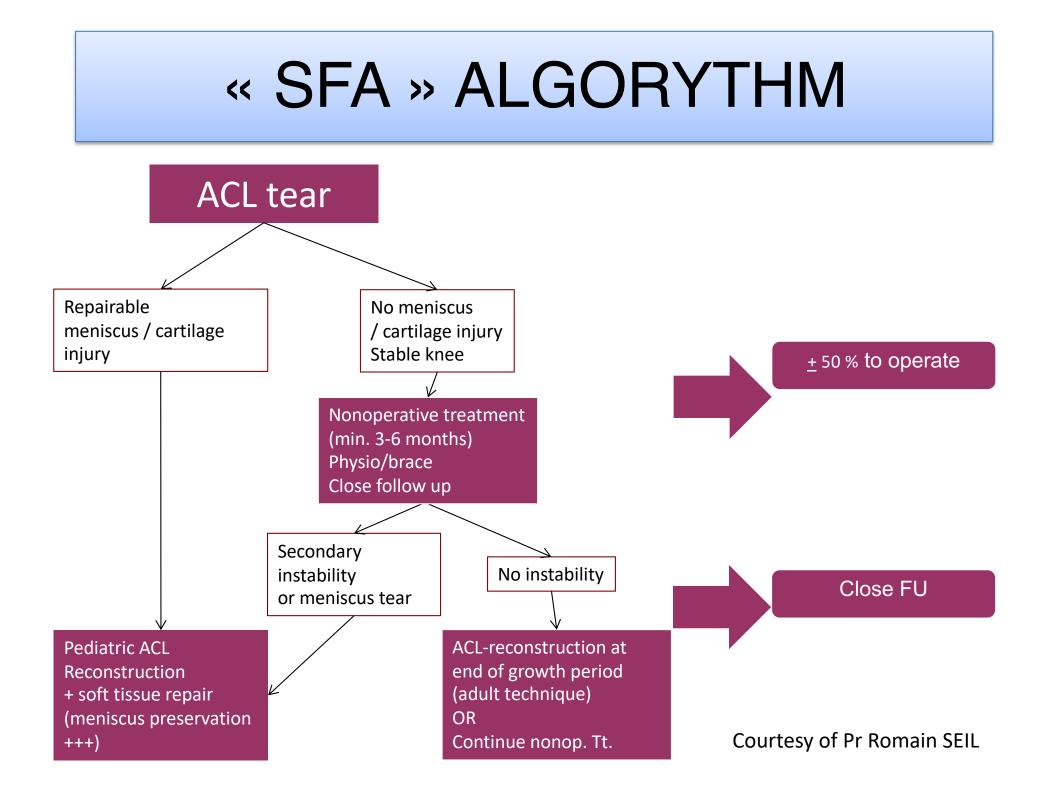
5


- Knee = area high growth potential
 - Femur = 1,2 cm / year
 - Tibia = 0,8 cm / year
- Bony age : residual growth
 - X-rays : hand-wrist / elbow
 - Centrifugal closing of growth-plate

END of bone GROWTH in the knee

- Female 13,5 y.
- Male 15,5 y.

Growth of upper & lower segment not proportional

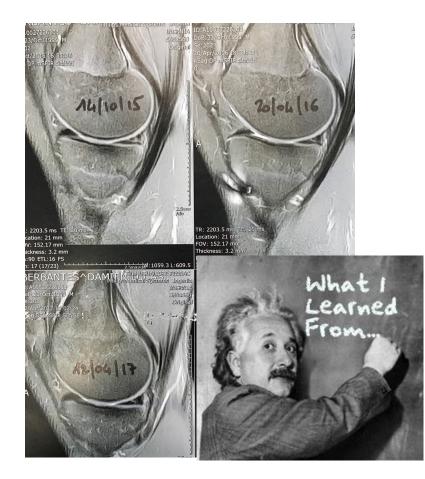


Gicquel P, Rev Chir Orthop 2007

Quantify the residual growth potential

MANDATORY +++

Associated lesions : It makes change the decision algorythm


Old fashion: Abstention

» Never operate on childrens »

v. « systematic » surgery

Take Home messages

« Kids & adolescents are special »

- Instability is rarely reported by childrens
- Physiologic hyperlaxity (≠instability)
- Easy access to MRI
- BONY AGE
- Screening for meniscal lesions
- CLOSE follow-up +++
- Dedicated teams

CONCLUSIONS :

What we know ... and ignore

- Natural history of pediatric ACL DEFICIENT and RECONSTRUCTED knee not fully understood = long FU is needed to the end of the growth (at least)
- FAILURE rate after ACL-r is higher than in adults
- No evidence that subsequent meniscal lesions and ARTHRITIS could be avoided by early ACL reconstructions
- CONSERVATIVE treatment is sometimes an option
- Different techniques depending of children's characteristic in experienced surgical centers